Skip to content

You are here: Home / News / Joan Francesc Gilabert Navarro defends his thesis on computational methods for drug development

Joan Francesc Gilabert Navarro defends his thesis on computational methods for drug development

Joan Francesc Gilabert Navarro defended his thesis directed by Victor Guallar of the Barcelona Supercomputing Center (BSC) the 22th of July in the North Campus. Titled "Estimation of binding free energies with Monte Carlo atomistic simulations and enhanced sampling", the thesis presents the development of a method to predict affinity in protein-ligand systems, with the aim of accelerating the development of new drugs
Joan Francesc Gilabert Navarro defends his thesis on computational methods for drug development
Illustration of the binding process of trypsin protein and benzamidine ligand obtained with AdaptivePELE

The advances in computing power have motivated the hope that computational methods can accelerate the pace of drug discovery pipelines. For this, fast, reliable and user-friendly tools are required. One of the fields that has gotten more attentions is the prediction of binding affinities. Two main problems have been identified for such methods: insufficient sampling and inaccurate models.


This thesis is focused on tackling the first problem. To this end, we present the development of efficient methods for the estimation of protein-ligand binding free energies. We have developed a protocol that combines enhanced sampling with more standard simulations methods to achieve higher efficiency. First, we run an exploratory enhanced sampling simulation, starting from the bound conformation and partially biased towards unbound poses. The we leverage the information gained from this short simulation to run, longer unbiased simulations to collect statistics.

Thanks to the modularity and automation that the protocol offers we were able to test three different methods for the long simulations: PELE, molecular dynamics and AdaptivePELE. PELE and molecular dynamics showed similar results, although PELE used less computational resources. Both seemed to work well with small protein-fragment systems or proteins with not very flexible binding sites. Both failed to accurately reproduce the binding of a kinase, the Mitogen-activated protein kinase 1 (ERK2). On the other hand, AdaptivePELE did not show a great improvement over PELE, with positive results for the Urokinase-type plasminogen activator (URO) and a clear lack of sampling for the Progesterone receptor (PR).


We demonstrated the importance of well-designed suite of test systems for the development of new methods. Through the use of a diverse benchmark of protein systems we have established the cases in which the protocol is expected to give accurate results, and which areas require further development. This benchmark consisted of four proteins, and over 30 ligands, much larger than the test systems typically used in the development of pathway-based free energy methods.

In summary, the methodology developed in this work can contribute to the drug discovery process for a limited range of protein systems. For many other, we have observed that regular unbiased simulations are not efficient enough and more sophisticated, enhanced sampling methods are required.

Filed under: