Barocaloric effects in a novel spin-crossover compound

Dr. Michela Romanini
Juan-de-la-Cierva fellow

GCM - Grup de Caracterització de Materials
Motivation
Today 3600 million AC units installed → 2050 14000 million AC units installed
Motivation

COOLING DEVICES > 15% world-electricity consumption

8% of total greenhouse emissions

Gases:
- HCFC
- HFC

Leaks (3%)

Greenhouse effect
Motivation

(UE Regulation 517/2014)

Gases:

• HCFC
• HFC

Need for an environmentally-friendly cooling alternative

Solid-state devices

• No leaks
• Promise higher efficiency
How does refrigeration work?

Vapour compression cycle (Reverse Brayton cycle)

Liquid-Vapour transition
Vapour compression cycle

Liquid-Vapour transition

Clausius-Clapeyron:

\[
\frac{\Delta V_t}{\Delta S_t} = \frac{dT}{dp}
\]
Vapour compression cycle

Liquid-Vapour transition

Clausius-Clapeyron:

$$\frac{\Delta V_t}{\Delta S_t} = \frac{dT}{dp}$$
Vapour compression cycle

Liquid-Vapour transition

Clausius-Clapeyron: \(\frac{\Delta V_t}{\Delta S_t} = \frac{dT}{dp} \)
Vapour compression cycle

Liquid-Vapour transition

Clausius-Clapeyron:
\[
\frac{\Delta V_t}{\Delta S_t} = \frac{dT}{dp}
\]
Vapour compression cycle

Liquid-Vapour transition

\[
\Delta V_t \frac{dT}{\Delta S_t} = \frac{dT}{dp}
\]
Vapour compression cycle

Liquid-Vapour transition

\[p_{\text{atm}} \]

\[T_1 \]

\[T_0 \]

\[T_2 \]

\[T \]

\[S \]

\[+Q \]

\[-Q \]

\[p_1 \]

\[p_{\text{atm}} \]

Clausius-Clapeyron:

\[\frac{\Delta V_t}{\Delta S_t} = \frac{dT}{dp} \]
Solid-state refrigeration cycle

Vapour \longrightarrow Solid

L-G phase transition

S-S phase transition

\[\frac{\Delta V_t}{\Delta S_t} = \frac{dT}{dp} \]

Clausius-Clapeyron: \[\frac{\Delta V_t}{\Delta S_t} = \frac{dT}{dp} \]
BAROCALORIC EFFECTS

Clausius-Clapeyron:

$$\frac{\Delta V_t}{\Delta S_t} = \frac{dT}{dp}$$

Solid-state refrigeration cycle

Vapour

L-G phase transition

Solid

S-S phase transition

isothermal ΔS

adiabatic ΔT
Other types of solid-state caloric effects

Barocaloric

Elastocaloric

Magnetocaloric

Electrocaloric
Other types of solid-state caloric effects

Barocaloric

ADVANTAGES:

• Many materials with S-S transition sensitive to p
• No fatigue, long term cyclability
• p is easier to generate
Instrumental Setup: quasi-direct method
Calculation of the caloric effects: Quasi-direct method

\[\frac{dQ}{dT} \]

Phase diagram

\[T_T \]

\[P_{\text{atm}} \] \[P_1 \] \[P_2 \]

\[P_1 \] \[P_2 \]

\[T \]
Calculation of the caloric effects: Quasi-direct method

Phase diagram

Hysteresis and Reversibility

\[p_{\text{atm}} \quad p_1 \quad p_2 \]

\[d\overline{Q}/dT \]

\[T \]

\[T_t \]

Heating

Decompression

Compression

Cooling
Calculation of the caloric effects: Quasi-direct method

\[\Delta S_t = \int_{T_i}^{T_f} \frac{1}{T} \frac{dQ(p)}{dT} \, dT \]

I Transition entropy change

II
Calculation of the caloric effects: Quasi-direct method

II Heat capacity

\[S(T, p) - S(T_0, p) = \int_{T_0}^{T} \frac{C_p}{T} \, dT \]

III Volume

\[S(T, p) - S(T, p_{\text{atm}}) = -\int_{p_{\text{atm}}}^{p} \left(\frac{\partial V}{\partial T} \right)_p \, dp \]

X-ray diffraction, dilatometry
Calculation of the caloric effects: Quasi-direct method

\[\Delta S(T, p \rightarrow p_{atm}) = S(T, p_{atm}) - S(T, p) \]

\[\Delta T(S, p \rightarrow p_{atm}) = T(S, p_{atm}) - T(S, p) \]
Calculation of the caloric effects: Quasi-direct method

\[\Delta S(T, p_{atm} \rightarrow p) = S(T, p) - S(T, p_{atm}) \]

\[\Delta T(S, p_{atm} \rightarrow p) = T(S, p) - T(S, p_{atm}) \]
Calculation of the caloric effects: Quasi-direct method

\[\Delta S(T, p_{atm} \to p) = S(T, p) - S(T, p_{atm}) \]

\[\Delta T(S, p_{atm} \to p) = T(S, p) - T(S, p_{atm}) \]
Reversible caloric effects and hysteresis

\[\Delta S_{\text{rev}}(T, p_{\text{atm}} \rightleftharpoons p_2) = S_{\text{cool}}(T, p_2) - S_{\text{heat}}(T, p_{\text{atm}}) \]

\[\Delta T_{\text{rev}}(T, p_{\text{atm}} \rightleftharpoons p_2) = T(S_{\text{cool}}, p_2) - T(S_{\text{heat}}, p_{\text{atm}}) \]
Reversible caloric effects and hysteresis
Reversible caloric effects and hysteresis

minimum pressure to achieve reversible barocaloric effects
Materials for the solid-state refrigeration cycle

Should have:

- 1st order transition close to room T, with large ΔH
- T high sensibility to applied field
- Small hysteresis
- Low toxicity
- Low cost
- High density
- High thermal conductivity
Materials for the solid-state refrigeration cycle

Need of material with solid transition accompanied by large ΔH:

order-disorder transitions under the application of an external field

- Change in the magnetization
 - Ex: Alloys based on MnNi-Co-Mn-Ga, Ni-Mn-In
- Change in the polarization
 - Ex: salts KNO_3, BaTiO_3
 - Molecular Crystals $\left(\text{C}_5\text{H}_7\text{N}_2\right)^+\text{ClO}_4^-$
- Change in the orientation
 - Ex: NPA, NPG, Adamantane Derivatives
- Change in the ionic conductivity
 - Ex: AgI
Materials for the solid-state refrigeration cycle

Need of material with solid transition accompanied by large ΔH:

order-disorder transitions under the application of an external field

<table>
<thead>
<tr>
<th>Magnetostructural</th>
<th>Ferroelectrics</th>
<th>Plastic crystals</th>
<th>Superionic conductors</th>
<th>Spin Crossover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic</td>
<td>Polar (Positional/rotational)</td>
<td>Orientational</td>
<td>Positional (diffusion)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Spin Crossover</td>
</tr>
</tbody>
</table>

- **Change in the magnetization**
 - Ex: Alloys based on Mn Ni-Co-Mn-Ga Ni-Mn-In

- **Change in the polarization**
 - Ex: salts KNO_3, BaTiO_3
 - Molecular Crystals $(C_5H_7N_2)^+\text{ClO}_4^-$

- **Change in the orientation**
 - Ex: NPA, NPG, Adamantane Derivatives

- **Change in the ionic conductivity**
 - Ex: AgI

- **Change in spin state (LS-HS)**
 - Ex: Fe(qnal)_2
 - $\text{Fe}_3(\text{bntrz})_6(\text{tcnset})_6$
Spin-crossover material (SCO)

switching between LS-HS state by changes in T, p or light irradiation
Giant and Reversible Barocaloric Effect in Trinuclear Spin-Crossover Complex Fe₃(bntrz)₆(tcnsset)₆

Properties

- abrupt one-step spin transition
- negligible hysteresis
- $\Delta S_t (p_{amb}) \sim 80 \text{ J kg}^{-1} \text{ K}^{-1}$
- sharp volume change at spin transition

$\frac{|\Delta V_t|}{V_i} \sim 3\%$
Differential Thermal Analysis measurements

- \(\frac{dT}{dp} \sim 25.0 \, K \, kbar^{-1} \)
- Clausius-Clapeyron:
 \(\frac{dT}{dp} = \frac{\Delta V_t}{\Delta S_t} \sim 25.6 \, K \, kbar^{-1} \)
- Small hysteresis: \sim 2 \, K \, / \sim 65 \, bar
Reversible barocaloric effect:

\[S(T_p) - S(250, p_{atm}) \text{ [J K}^{-1} \text{ kg}^{-1}] \]

\[p \text{ [kbar]} \]
- 0.0
- 0.5
- 1.1
- 1.6
- 2.0
- 2.5

ΔS: 80 → 120 J K\(^{-1}\) kg\(^{-1}\)

ΔT: 6 → 35 K
<table>
<thead>
<tr>
<th>Sample</th>
<th>Δp (kbar)</th>
<th>ΔS_{rev} (JK$^{-1}$kg$^{-1}$)</th>
<th>ΔT_{rev} (K)</th>
<th>ΔT_{hyst} (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe$_3$(bntrz)$_6$(tcnset)$_6$</td>
<td>0.33</td>
<td>80</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>120</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td>TMA(Mn(N$_3$)$_3$)</td>
<td>2.5</td>
<td>100</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>AgI</td>
<td>2.5</td>
<td>60</td>
<td>18</td>
<td>25</td>
</tr>
<tr>
<td>C$_{60}$</td>
<td>1.0</td>
<td>32</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>NPA</td>
<td>2.6</td>
<td>320</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>NPG</td>
<td>2.5</td>
<td>445</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Ni-Mn-In</td>
<td>2.6</td>
<td>27</td>
<td>4.5</td>
<td>4</td>
</tr>
<tr>
<td>Sample</td>
<td>Δp (kbar)</td>
<td>ΔS_{rev} (JK$^{-1}$kg$^{-1}$)</td>
<td>ΔT_{rev} (K)</td>
<td>ΔT_{hyst} (K)</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------</td>
<td>--------------------------------------</td>
<td>----------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Fe$_3$(bntrz)$_6$(tcnset)$_6$</td>
<td>0.33</td>
<td>80</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>120</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td>TMA(Mn(N$_3$)$_3$)</td>
<td>2.5</td>
<td>100</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>AgI</td>
<td>2.5</td>
<td>60</td>
<td>18</td>
<td>25</td>
</tr>
<tr>
<td>C$_{60}$</td>
<td>1.0</td>
<td>32</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>NPA</td>
<td>2.6</td>
<td>320</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>NPG</td>
<td>2.5</td>
<td>445</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Ni-Mn-In</td>
<td>2.6</td>
<td>27</td>
<td>4.5</td>
<td>4</td>
</tr>
</tbody>
</table>
Refrigerant Capacity (RC)

FBT

$0.6 \rightarrow 5.8 \text{ J/g}$

$(0.3 \rightarrow 2 \text{ kbar})$
Conclusions:

• Solid-state caloric effects are a possible alternative to current refrigeration systems that use harmful gases.

• Advantages of solid-state refrigeration systems: higher efficiencies, more compact devices, no leaks

• There is a need of finding new materials for implementation.

• Results on SCO: stimuli for further research of the barocaloric effect in such compounds and for the design of novel SCO materials
Thank you for the attention